SUBSCRIBE HERE
Precision neuroengineering enables reproduction of complex brain-like functions in vitro | Science Daily
Source: Google Images

Precision neuroengineering enables reproduction of complex brain-like functions in vitro | Science Daily

One of the most important and surprising traits of the brain is its ability to reconfigure dynamically the connections to process and respond properly to stimuli. Researchers from Tohoku University (Sendai, Japan) and the University of Barcelona, using neuroengineering tools, have created in vitro neural circuits that reproduce the capacity of segregation and integration of brain circuits and which allow researchers to understand the keys of dynamic reconfiguration. The study has been published in Science Advances.

Dynamic reconfiguration is understood as the strengthening or weakening of connections by increasing or decreasing neuronal activity. In the brain, an increase in the cohesion of neuronal circuits is known as integration, and a decrease is known as segregation. “This study shows the importance of modular organization to maximize the flexibility of a neural circuit. It also shows the potential of in vitro tools and biophysical models to progress in the understanding of collective phenomena in such a fascinating and rich complex system like the brain” says Jordi Soriano, researcher at the Institute of Complex Systems of the UB (UBICS) and co-author of the study.

Source: Precision neuroengineering enables reproduction of complex brain-like functions in vitro | Science Daily